
inwwiiWPPiiPWBP^fWPimiwwwifPiw^

AD/A-006 294

A HYPOTHETICAL DIALOGUE EXHIBITING
A KNOWLEDGE BASE FOR A PROGRA M-UNDER-
STANDING SYSTEM

Cordeil Green, et al

Stanford University-

Prepared fort

Advanced Research Projects Agency

Janu ary 197 5

DISTRIBUTED BY:

nmr
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

qppnpiPP^u(!«ii»iiM^iiwivw>»iMiiiii iiiii*iw^iniimi|inpniBminMii«MwiuiujiiipijiiiwiRnnpinpipnp^^■"u.MiMw.»iu.wp«iuHppnMiipipp>:ii ^■*!m

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE fHTiBn Vata EnteieJ)

REPORT DOCUMENTATION PAGE RErtD INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

STAN-CS-TP-^TÖ

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

A HYPOTHETICAL DIALOGUE EXHIBITING A KNOWLEDGE
BASE FOR A PROGRAM-UNDERSTANDING SYSTEM.

5. TYPE OF REPORT a PERIOD COVERÜD

technical, Jan. 1975
6. PERFORMING ORG. REPORT NJMBER

STAN-CS-75-V76
7. AUTHORfs)

C. Green and De Barstow

8. CONTRACT OR GRANT NUMBERfsJ

DAHC 15-73-C-0435

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Stanford University
Computer Science Department
Stanford, California 94305

10. PROGRAM ELEMENT, PROJECT, TASK
ADEA & WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

ARPA/lPT, Attn: Stephen D. Crocker
1400 Wilson Blvd., Arlington, Va. ^2209

12. REPORT DATE

Jan. 1975
13. NUMBER OF PAGES

AL
14. MONITORING AGENCY NAME a ADDRESSfi7 di/Zeronl Irom Controlling Ollice) 15. SECURITY CLASS, (nl t!,Is report)

ONR Representative: Philip Surra
Durand Aeronautics Bldg., Rm. 165
Stanford University
Stanford, California 9h'50'?

UNCLASSIFIED
15a. DECLASSIFIC ATI ON/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II dltlerfnl from Report)

18. SUPPLEMENTARY NOTES

Repfoducnd by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Dupartmunl of Commofco
Springliold, VA. 22151

19. KEY WORDS (Continue on rcvorso . /do il necessary and Identity by block number)

20. ABSTRACT CConllnuu on reverse side II necessary and identity by block number)

A hypothetical dialogue with a fictitious program-understanding system
is presented. In the interactive dialogue the computer carries out a
detailed synthesis of a simple insertion sort program for linked lists.
The content, length and complexity of the dialogue reflect the under-
lying programming knowledge which would be required for a system to
accomplish this task. The nature of the knowledge is discussed and
the codification of such programming knowledge is suggested as a major
research area in the development of program-understanding systems.

DD , "RM
73 1473 —-^ EDITION OF 1 NOV 65 IS OBSOLETE uiQöÄiSüftJECT TO CHANGE

SECURITY CLASSIFICATION OF THIS PAGE (When Dofa Entered)

immmm n r

TTM ^il1"!1 I'lininiiimiinin i wumi HIIHIHIIH ll"lll|i""WIWMMmWyWWW^i|il|i'l|1' i1. ".'linn ''M 11 i in n um _IU M ,atl,

f

Stanford Artificial Intelligence Laboratory
Memo AIM-258

Computer Science Department
Report No. STAN-CS-75-476

JANUARY 1975

A Hypothetical Dialogue
Exhibiting a Knowledge Base

For a Program-Understanding System
by

Cordell Green
David Barstow

ABSTRACT

A hypothetical dialogue with a fictitious progiam-iindeistanding system is presented. In
the Interactive dialogue the computer carries out a detailed synthesis of a simple Insertion sort
program for linkrd lists. The content, length and complexity of the dialogue reflect the
underlying urogramming knowledge which would be required for a system to accomplish this
task. The nature of the knowledge is discussed and the codification of such programming
knowledge is suggested as a major research area in the development of program-
understanding systems.

This research xuas supported by the Advanced Research Projects Agency of the Department of
Defense under Contract DAHC I5-75-C-0435 . The views and conclusions contained in this
document are those of the autlm(s) and should not he interpreted as necessarily representing the
official policies, either expressed or implied, of Stanford University. ARPA, or the V. S.
Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield.
Virginia 22/5/.

-——■-- - - ****** J:JAi.V^*M^&^W*

.'«i i MUMpipiM.«iiMi«i»jiii.Nifli^in»i«iii;ii,j,.ini m .u.umtmmimmiimMmwm" tßV'>w*wvmmf.9mmmm,*~- mmnmv\njt,q!mfmmmmf.
■ ■ ■ .-

uiaMJiMHllWi *^^»rs,—m»

A flYPOTHETICAL DIALOGUE
EXHIBITING A KNOWLEDGE HASE FOR A PROGRAM-UNDERSTANDING SYSTEM

Green and Barctow January, 1975

TABLE OF CONTENTS

INTRODUCTION

(a) SUMMARY

(b) DOMAIN OF DISCOURSE

1

1

2

A DIALOGUE

(a) INTRODUCTION

(b) PART 1: Setting Up the Main Tasks

(c) PART 2: Synthesizing the Selector

(d) PART 3; Synthesizing the Constructor

(e) PART 4: Completing the Program

3

3

5

11

17

31

TYPES OF PROGRAMMING KNOWLEDGE

IV. SUMMARY AND CONCLUSIONS

V. ACKNOWLEDGEMENTS

VI. REFERENCES

33

35

36

37

H!

IBipsßmmmmmmmmmmmmBmwwmmmMv ^mmm^.-*'mm,;imm)mmmwm»mi^ mmmmmm'/m

INTRODUCTION page 1

(a) SUMMARY

I. INTRODUCTION

The overall objective of our research is to gain more insißW into the

programming process as a necessary step toward building program-uiulnstatnling systems.

Our approach has been to examine the process of synthesizing very simple procrnms in

the domain of sorting. We hope that by beginning with this simple domain and

developing and implementing a reasonably comprehensive theory, we can then gauge

what is required to create more powerful and general program-understanding systems.

Toward this end, we are working on first isolating and codifying the knowledge

appropriate for the synthesis and understanding of programs in this class and then

embedding this knowledge as a set of rules in a computer program. Along the way, we

have developed some preliminary views about what a program-understanding system

should know.

Our goal in this particular paper is to present a dialogue with a hpothdiail

program-understanding system. A dialogue was chosen as a method of presentation

that would exemplify, in an easily understood fashion, what such a system should know.

The subject of the dialogue is the synthesis of a simple insertion sort program. Each

step in the dialogue corresponds to the utilization of one or more pieces of suggested

programming knowledge. Most of this knowledge is slated explicitly in each step. The

dialogue presented here is a highly fictional one, although some portions of ihe

reasoning shown in the dialogue have been tested in an experimental system.

mm**

BSpppiSWPPBIiipPEli^^

INTRODUCTION
page 2

We are now in the process of formulating the necessary programming knowledge

as a set of synthesis rules. However, the scope of this paper does not include the

presentation of the current state of our rules. So far some 110 rules have been

developed and are being refined in a rule-lesling system. The synthes.s tasks on which

these rules are being debugged include two insertion sorts, one selection sort, and a

list reversal. Wc hope to present in a later paper a description of the set of rules.

As will become apparent in the dialogue, one of our conjectures is that a

program-understanding system will need very large amounts of many different kinds of

knowledge. This seems to be the key to the flexibility necessary to synthesize,

analyze, modify, and debug a large class of programs. In addition to the usual types of

programming knowledge, such as the semantics of programming languages or techniques

of local optimization, many other types are needed. These include, at least, high-level

programming constructs, strategy or planning information, domain-specific and general

programming knowledge, and global optimization techniques. In Section 111 we discuss

this further and show where these kinds of knowledge occur in the dialogue.

(b) DOMAIN OF DISCOURSE

Topics mentioned in the dialogue include data structures, low-level operations,

and high-level programming constructs. The main data structures mentioned in our

dialogue are ordered sets represented by lists. The-low level operations mentioned

include assignment, pointer manipulation, list insertion, etc. Some of the higher-level (in

some sense) notions or constructs we consider are permutation, ordering (by various

rn^rnm lunmmiti ^^■v-■<.,*■■-...

"'I—"■ Wl|MpWp|iWIIW»fMpi#*JJ.MWi"PHMW^^ L.JW^.IUVIH,

INTRODUCTION paße 3

criteria), set enumeration, generate and test, generate and process, proof by induction,

conservation of elements durinß a transfer, and methods of temporary marking (or

place-saving) of positions and elements. Time and space requirements for various

methods are not discussed.

The target language is LISP, in particular the INTERLiSP language [10]. However,

in the dialogue we represent the programs in a fictitious meta-USP,

II. A DIALOGUE

(a) INTRODUCTION

In this section we wish to exhibit what we consider to be a reasonable level of

understanding on the part of a progran-understanding system. It is not obviou-: how

best to present this in a way that is easy for the reader to follow, since the synthesis

process is rather complex. Wo hope that an English language dialogue is adequate. We

have added to the English several "snapshots" of the developing program that help to

indicate where the system is in the programming process. These diagrams are similar

to the stepwise refinements used in structured programming [1], Our dialogue may be

considered as a continuation of the technique of presentation used by Floyd for a

program verifier-synthesizer [2], although our more hypothetical system has been

allowed to know more about program synthesis for its domain of discourse.

In certain ways we feel that the dialogue is not representative of how a

program-understanding system would appear to the user during the synthesis process

-- I äjMiiftifct^i^Mjairtohk^.'fi .._ .__ „i j^iM

,W!^4.i(U«4l[iP,^W^^^^^^^^

A DIALOGUE Page 4

(although such a low-level dialocue would at times have its place). For expository

purposes the dialogue has certain choices and inferences made by the machine and

others made by the user. Depending upon the application, these decisions and

Inferences could reasonably be re-distributed between user and machine, with some

made by other automated "experts", such as an efficiency expert, and other decisions

forced by the context in which the program is written. For example, the data

structures for this insertion sort might be determined in advance if the sort routine

were part of a larger system, and all choices made by the user could be made instead

by rules calculating the efficiency of each branch. A more typical user-machine dialogue

would usually be conducted at a much higher level and in the words used to talk about

the application area for the program. But to present a hypothetical dialogue in which

the program merely said, "OK, I'm all finished," or, "I wrote a sort program as part of

your operating system," wouldn't explicate very much programming knowledge.

The style of the dialogue is not intended to be a strong suggestion about what

the process of sfwifying a program should be. In fact, we feel that program

specificaticn is a difficult problem in automatic programming research [4 j, and we touch

on only a few aspects of it here. However, some of the techniques used in the

dialogue will probably find some, as yet undetermined, place in program-understanding

systems. The obvious techniques include interactive specification, natural language

communication, and the periodic presentation of suimnaries of the structure and content

of the evolving program.

We note that we have endowed our hypothetical system with various abilities.

^aMB||raiMMi^rt^ ■MMMiMIUMIMilim mi

I'TOFBPWBIPPBBPPPPPW^^ ;^lJ!^p,lH|ll^|i|p|.j|))jJ4ijl,|iAUyJ aiWIIWP1!#WiWHJ(|IH|

A DIALOGUE page 5

including an inference capability, a program simplification capability, and the ability to

illustrate and summarize where it is in the programming process. Further, the dialogue

sometimes takes on the character of a decision-tree, sometimes of goal-orientsd

problem-solving, and sometimes of step-wise refinement. These all seem appropriate

to the task.

Various decisions, such as how large to make a step, when to suppress or

explicate an inference, and when to present a diagram, are somewhat arbitrary, but

were made primarily on the basis of what seemed to be the clearest exposition.

Before the start of the dialogue, we wish to remind the user that the focus is

not on the particular mechanisms which might be employed to produce the hypothesized

behavior, but rather on the reasoning itself.

(b) PART 1: Setting Up tho Main Tasks

1. User: Please write me a sort program. Use linked lists to represent the input and

output, which arc ordered sots. The output set should be ordered so that each

element is numerically greater than the preceding element. The input set will be

called INPUT and the output set will be called OUTPUT.

2. Machine: As I understand it, a sort program produces as output a permutation

(of the input) that satisfies a test. In this case, the test is that the elements be

ordered on the basis of the above-mentioned ordering relation, "numerically

greater than". Please choose one of the two known methodsi for finding a

T The limitation to only two "known" choices is arbitrary, but it is reasonable to expect
a system to have a limited number of choices.

rat** MMWMMMMMMMKttMMliM liMlf1imrii[^-tii'li['iir'J-''r ■ - '-'tir

^wywi^wsrarrwiR^

PART 1: Setting Up the Main Tasks page 6

permutation that satisfies a test:

(a) Generate and test permutations until the desired one is found,

'b) Carefully construct the desired permutation.

3. User: Carefully construct the desired permutation.

4. Machine: Should the output set be constructed in the same list colls as the

input set, or should a new list be created?

5. User: A new list should be created.!

6. Machine: Do you want an iterative or recursive program?

7. User: Iterative. [We wish to remind the reader that the distinctions between

"user" and "machine" arc somewhat arbitrary. Yet a decision must be made, so

we have chosen to let our hypothetical "user" make it. Furthermore there is no

reason to expect the user to have a preference for an iterative or recursive

program. We have our user choose an iterative structure over what might be a

more natural recursive structure, because there are fundamental aspects of the

algorithm which are more explicit in its iterative form.]

8. Machine: Then the program will be in the form of a transfer progmm which must

be (otali The program will transfer all elements from the input to positions in

the output, such that the final output is a permutation (of the input) which

satisfies the above ordering relation, namely increasing by numerical value.

r This does not preclude overwriting the input set during the sort. Overwriting might be
done in order to indicate which elements have been selected from the input.

? By "total", we mean that the transfer loop must be repeated until all elements have
been transferred.

jpllp^lii^iJIPP^^^^

PART 1: Setting Up the Main Taokr page 7

The transfer poradigmü

transfer program;
LOOP UNTIL nil elements of input have been processed;

selector;
select the next element from input;

constructor;
add this element to output;

REPEAT.

9. Machine! In order to write such a transfer program, I must achieve several

goals:

(1) Write a selector. On each call, the selector will find that element of

the input which comes next in the chosen transfer order. The selector

consists of two parts:

(a) selector initializer

(b) selector body

(2) Write a constructor. On each call, the constructor will produce a new

output (or modify the old output), so that the new element is in the

appropriate position but that otherwise the order of elements in the

output is unchanged. The constructor consists of two parts:

(a) constructor initializer

t As illustrated, the transfer program has a "selector" part and a "constructor" part.
The selector produces the element'-, one at a lime, and the constructor builds the new
set. Either the selector or the constructor may re-order the set, i.e., the selector can
produce the elements in an order different from the stored order, or the constructor
can build a set with an ordering different from the order of receipt of the elements.

? We will generally present in our diasrams only those parts which seem relevar'. to
the curren* conl t.

■•—'-'—' HililiiHi Milinr"" - .^..-^ u.. JiiliMMmillMMlirT ii

»WSPPipwWBTOW^iTOÄJsi^^ ,i">VJ»ui;p^K|]^w«,ii«-.»j.WM^^

PART 1: Setting Up the Main Tacks page 8

(b) conolrudor body

Before I can write these parts, I must:

(3) Select a transfft OK/O—the order in which the variables will be

transferred from the input to the output.

(4) Select a transfer termination mctliod—a test that all elements have

been transfered, and a position in the program appropriate to the type of

test selected.

(5) Select a name for the transfer variable—a variable which holds as its

value the element being transferred.

After writing the parts, I must:

(6) Combine the selector, constructor and transfer termination test into

a generate and process loop. This completes the f;nal program,

'ma'^^'*''-,'i;ia"''ttMB'aaMj'Ma^^ i . rfiwiaaÄiÄto^iaj..

i«WO»''W"™!l»(»«WWW«WPI«l^^

PART 1: Setting Up the Main Tacks page 8

(b) conclructor body

Before I can write these parts, 1 must:

(3) Select a transfer (Wo—the order in which the variables will be

transferred from the input to the output.

(4) Select a transfer termination method—a test that all elements have

been transfered, and a position in the program appropriate to the type of

test selected.

(5) Select a name for the transfer vnriable—a variable which holds as its

value the element being transferred.

After writing the parts, I must:

(6) Combine the selector, constructor and transfer termination test into

a generate and process loop. This completes the final program.

-mm*m - ■ - - ■
^^.^^,,^.w.^-^"-""^-^--

..JiniJimniPüllpWx«*«.iJJi»,w.|i«ii! i- Mwmimvmmv.inmvwniimwmw"*^ mmmumm*mm»Mmwvi.yui*ii UMUWK \nmnmw^mm)wi

PART 1: Settinc Up the Main Tackr. page 9

The basic otruclurc of tho proßrom (including test position)!

i

L

transfer i ni t i nIi rnr:
seIoctor initia Ii zer:
construe tor i nit ial i'er:

transfer body:
LOOP UNTIL DONE;

transfer termination tost:
IF all olements havo been transferred

THEN DONE:

selector body:
seifet the next element from input;

constructor body:
add Ihn element to nut put;

REPMT;
DONE: HALT

(1)(a)

(2)(a)

(A)

(1)(b)

(2) (b)

10. Machine: Should the tranofer order be linear with respect to the initial order

or the final order'.'!

11. User: Linear with respect to the initial order.

12. Machine: Should the transfer order be identical to the initial order or the

converse of tho initial order?

13. User: Identical.

t Our syntax for iterative statements and exits is that proposed by Zahn [11] and
supported by Knulh [Gj. Loops ore exited upon encountering an event, such as DONE in
the above example. The program exits to the occurrence of the ev?nt label after the
body of the loop. Events are declnrod after Lnni1 UNTIL. REPEAT denotes the end of the
loop.

? We define the "initial" and "final" orders to be the conventional list-representation
ordering of the input set and of the desired output set, respectively. By "linear with
respect to an order" we mean either identical to that order or the converge of that
order. The user's choice of "linear with respect to the initial order" amounts to
choosing an insertion sort algorithm, rather than a selection sort algorithm. The full
effect of this choice will be seen when jhoosing the "construction re-ordering" during
the synthesis of the constructor.

 .-/,.,tj-^--i--....i.^J',..-.-*-iiW>ii^;.

pWft^pwWftWWa^ ■'.' ^ ^^.WJWt JMHN^WII^iWiWg^^^ -^

PART 1: Setting Up the Main Tacks page 10

14. Machine: Now let's select a transfer termination method. This will consist of a

test and a position for the test. Since the transfer will be total, the transfer

termination test must test whether all elements have been transferred. This is

equ'valent to testing whether no elements remain to be selected. This is the

same test which is used by the selector to slop its generation of elements. I will

use this test as the transfer termination test. While writing the selector I will

thus have to write a third part: the selector termination test. Since this test

must precede a call to the selector body, I will put the test at the beginning of

the loop.t

15. Machine: I will use ELEMENT as the transfer variable.?

t For ease in presentation the preceding diacram showed the result of this choice (i.e.,
the test appeared in the proper location), although the choice had not yet been made.
Considering all of the tests which might have been used and all of the places where
such a test might have been put, one could imagine a great deal of planning going into
making this rather difficult decision.

? To choose meaningful variable names requires knowledge about communication with
the user and is a difficult problem.

mmmm ■ — ""j-:— ■ i

mriimm ^ ?■•■?.-(»

PART 2: Synthesizing the Selector page 11

(o) PART 2: Synthesizing the Selector

We are about to work on the indicatedl parts of the selector

transfer Ini t i nli zen
selector initializer: -n
constructor initializer;

transfer body:
LOOP UNTIL DONE;

tran?ff?r termination tost;
IF all elements have been tran?fpri-ed*

n/l elements haiv been selected ^i
jmi DONE;

selector body!
select the next element fiom input; n

constructor body:
add the element to output;

REPFAT;
DONE: HALT.

16. Machine: I will now choose a selection re-ordering. I will use the term "selection

re-ordering" to refer to the relation between (a) the order of the elements in

the input (positional order) and (b) the order in which the elements are selected

by the selector (temporal order). Since the transfer order is linear and forward

t Throughout this dialogue, we will use speciol characters and type fonts to indicate
different sections of those diagrams. We present the meaning of the fonts here in case
confusion arises, but the meaning should be clear from the context,

areas not under consideration
(uith • • • indicating areas omitted]

areas currently under consideration
PROGRAM PARTS JUST COMPLETED
RESRRvr.n wnnns
BA5IC LISP rUNCTIONS

USER- OR MACHINE-DEFINED LABELS
=> the right arrow indicate?; a stop in the refinement process

mtmmmmmm Mi-mmiii i i - 11- i 111 ii ••iiiiii

fimmm**mmmfmmmmm*vmB&' vrvmmßivmmm'mv tmwmmmutmmmwmmufm^M'i

PART 2: Synthesizinc the Selector pace 12

(that is, identical to the input order), the selection re-ordcring must also be

linear and forward.

17. Machine: A selector is a type of zt'iunuor, a "total" generator that produces

each element of the input once und only once. Corresponding to the three parts

of a selector, this type of generator also has three parts:i

(l)a body which jctually produces the elements

(2) an initif!!!zer which can set up the generator before it is called the

first time

(3) a termination test (to be used as the transfer termination test)

which tests whether all elements have been generated

18. Machine: I must now select the stnte-saving scheme by which the generator will

save its state after each call In order to save its state, the generator must

remember Low the input set is divided into two sets:

(1) those elements which have already been generated

(2) those elements which are yet to bo generated

Recall that the generator is moving linearly through the input list from first to

last to find each new elctru nt, Therefore ail elements before its current position

in the list have already been generated, and all elements after its current

position are yet to be generated. To save the state of the generator, I need

f Technically, before these parts can be written, the production re-ordering for the
generator must be chosen. In this case, it is obviously the same as the selection re-
ordering, so we have omitted it from the dialogue in the interests of clarity. The
initializer is written after the producer, since in general the form of an initializer is
dependent on the body of the loop to be initialized.

iAte riiii iiiiinmiiifinr ii'iiiiiiiiiiitiMiiiiiiiiiiiM .-.■^.^.^.^.■■■■.■„^•..■, ._...„..

ISjSTOPiHpTOpJHSpra^

PART 2: Synthesizing the Selector page 13

only save a marker for the generator's current position in the input list. One

pointer will be adequate for this purpose. Let us call this pointer REST.

We are about to work on the indicated parts of the selector body

transfer initializen
• • •

transfer borki:
LOOP UNTIL DONE;

selector hocly:
sei ret the next element from input=*

ejencrate the next clement from input=>
produce element;
increment stole of generator;

• ■ •

RrPHATi
DONE: HALT.

'TI (2)
t| (1)

19. Machine: Now I will synthesize the body of the generator.

two pieces:

(1) increment the state of the generator

(2) produce the next element

need code for

MMMteH .__-,

BWWWHPBWIPMWPIWmWnBPIPPPfPWIi!^^

PART 2: Synihesizing the Selector page 14

20. Machine: To increment the stale of the generator, I will advance the position

pointer by one. Since the representation is a linked list, the code for this is

merely:

REST - CDR(REST)i

21. Machine: Now I will write the producer. Since the state-saving scheme uses a

pointer, REST, to separate those elements generated from those not yet

generated, and since the next element to be generated is the first element of

the non-generated set, then the process of saving the state will also effectively

mark the next element to be generated.! To produce the next element, then, I

need merely take the first element of the non-generated set, which is pointed to

by REi'T.* Since the representution is linked-lists, the subprogram for this is:

ELEMENT •- CAR(REST)

22. Machine: I now put the pieces of the generator body together into a block:

ELEMENT •- CAn(REST);
REST •- CDfMREST)

f Throughout, we will use the standard LISP terminology:
CAR(L> gives the first element of L
CDn(L) gives the remaining elements of L
C0N5(X L) creates a new list with first element X and with the rest of the

elements being those of the list L
NIL is the empty list (and list terminator)

f In a selection sort, the code to find the next element to be generated would be
considerably more complex since it would need to find the largest of the remaining
elements.

i There are situations in which the value of the element or a pointer into the list might
be returned, rather than the element itself,

... ^^ . _>- .. ^^^

WPWW nni MWIIIMIIHII.II.JVwiiii mmm**immmmm'i w.ijmm\mmm&mm*.m*n.m .. iw.iiuj.™jwi.ijmj,JiwiiMii«wi.i

PART 2: Synthesizinc the Selector page 15

We have JüPI finished the indicated parts

transfer initialirer:
^J,

• ■ •

transfer body: ^^
LOOP UNTIL DONE; Xb^iJi---^

selector hocly:
select the next element from input=>

ficnerate the next clement from input*
produce elements»

ELEMENT >- CAR(REST); '11
increment state of cioncrators*

REST - CDR(REST); T.I

REPFAT;
DONE: HALT.

23. Machine: I will now write the generator initializer and the generator

termination test. Since I am using the pointer REST to mark the elements not

generated, and since initially no elements have been generated, I must initialize it

to the entire input set:

REST «- INPUT

24. Machine: Now let's write the generator termination test (which will be used

as the transfer termination test). To test whether all elements have been

generated, I will test whether there are no elements remaining. Since the

elements are being generated in a forward linear order, I simply test for being at

the end of the input list. Since the representation is a linked list, this is simply a

test for emptiness:

REST • NIL ?

■Mü ■ i- ■! i r,liii«^"""^-. -

MW«W wmmmmrnwmmmm*^** mmmmm* mmfmammmmm.

PART 2: Synthesizing the Selector page 16

We have just finished the indicated parts

transfer ini t i nl\zert
selector initializer:*

generator initializer;*
REST - INPUT;

• • ■

transfer body:
LOOP UNTIL DONE:

trancfer termination tcc-t:
IF all elements have been transferred*

all elements have been selected*
all elements have been generated*

no elements remain*
REST - NIL

THEN DONE;
selector body:

select the next element from input*
cjenerate the next element from input*

produce clement*
ELEMENT •■ CAR (REST);

increment state of generator*
REST •- CDn(REjT);

• « •

REPEAT;
DONE: HALT.

-LI

11

25. Machine: I have finally finiohed the generator which the selector needed. In

fact, that is all there is to the entire selector, so the selector is finished.

mmmmmmmiim MM — - .-...,■,..

.f«mmiuiw.u ?^I*W«WIWBP»WPW«IIP|!PBBIPII^^

PART 3: Synthesizing the Constructor page 17

<d) PART 3: Synthesizing the Constructor

We are now working on the indicated parts of the constructor

transfer ini t i ali rer:
seIector i ni 11 a Ii zer:
constructo initializer:

transfer body:
LOOP UNTIL DONE;

transfer termination test:
IF all elements have been transferred:

all elements have been selected

THEN DONE-,
selector body:

select the next element from input!
constructor body:

oiid the element to output;
REPEAT-,
DONE: HALT

11

11

26. Machine: One way to create an output set that is a permutation of the

elements received by the constructor is to write an inductive constructor that

satisfies the following constraints:

(1) The initial output set must be empty.

(2) Each construction operation must be such that the new output set

consists of the old set plus one new element.!

(3) After each construction operation, the new set must satisfy our

ordering relation.

27. Maohinn! To write such a constructor, two decisions must first be made:

(1) Choose a construction re-ordering.

t It is sometimes convenient to think of the constructor as producing a sequence
of output sets, and sometimes as succossively modifying one output set.

|W|PWI|WWI|»JIW^W^ jjj.^j^wiip^jj.wiiji^

■W1«M—.H.^-J

PART 3: Synthesizing the Constructor page 18

(2) Choose a construction method for building a new set, given the old

set, the new element, and the position where the new element should

occur in the set.

After these choices are made, we will produce code for the constructor body and

then the constructor initializer.!

28. Machine: I will now choose a construction re-ordering. I will use the term

"construction re-ordering" to refer to the relation between (a) the order in which

the elements are received by the constructor (temporal order) and (b) the order

of the elements in the output (positional order). The re-orderings may be linear

or complex, where linear means same as or converse of, Since the order in

which the elements are received (the transfer order) is the same as the input

order, and the desired output order is not necessarily the same as (nor the

converse of) the input order, the construction re-ordering must be complex (non-

linear).? This re-ordering will be based on the "numerically greater than" ordering

relation. This means that the correct position of each element in the output list

will be such that all preceding elements are less than or equal to the new

element and all following elements are greater than the new element.?

t Note that we have implicitly decided that the construction consists of two steps: (1)
finding the position; (2) adding the clement to the set. One might imagine schemes in
which finding a position and modifying the set are interleaved operations.

f This choice of a complex construction re-ordering, along with the choice of a linear
selection re-ordering, completes the specification of an insertion sort, all of which
follow from the user's choice of a transfer order "linear with respect to the initial
order".

I For clarity, we will refer throughout to an element being "less than" or "greater than"

.-^^^-^at-t*. '■" ' ■ ■■ ■■■■■■ --.^- ■-■...»^^^a^^mumjiW^^^-... - , . . . _

i,W«iWJW!CTWWWJW»IW!iWliWl>w*^^

PART 3: Synthesizing the Constructor page 19

t 4?

29. Machine: Now we must select a construction method for building a new set from

the old one. The choices are:

(a) List insertion: Modify the structure of the old list by inserting a new

cell containing the new element.

(b) Shifting: Allocate a now space at the beginning (or end) of the set

and shift all elements before (after) the new element by one position.

Then put the new element into the vacant place.t

(c) Copying: Copy the old set into a new space, one cell larger than the

old space, with the new element taking up the extra position.

Which shall I use?

30. User: List insertion.

31. Machine'. Now I will write the body of the constructor. The body consists of

two parts:

(Da position finder, which finds the position where the new element

belongs

(2) a Hit inserter, which inserts the element at this position

32. Machine: When a position has been found, there are several ways to indicate

that position. First we must select one of these representations for a position.

\

another element and mean that the first element precedes or follows the second
element according to the chosen ordering relation.

f Perhaps, since the "shifting" operation is such an unlikely choice when lists are
being used, it shouldn't be prescntod to the user. It could be celled forth only
upon questioning or in unusual programming contexts.

1

^^Mtt ';-—-"; ' ■ [■■■IliMlfl JUJJ.. .■ijJ.v- ,*t- »J_...,:......L_-.. ..— ...:.> -■_;^1a,..^ J^:..^I.....L.„ .__„;,.a.;^

!lP!PW!P*iPpspilPPI^^

PART 3: Synthesizing the Constructor page 20

We are considering positions to be between two elements in a list. Since the

construction meihod involves inserting a new cell into the list, we must choose a

representation appropriate to insertions into linked lists. I know about two types

of such representations:

(a) Use one pointer as illustrated;

(pos it i an)

M L

BEFORE

In using this representation, a special unique value for BEFORE must be used if
the correct position is at the front of the list, "FRONT" will be used for this
purpose.

(b) Use two pointers as illustrated:

(posi t i on)

C

BEFORE AFTER

In using this representation, a special unique value for BEFORE must be used if
the correct position is at the front of the list. "FRONT" will be used for this
purpose. If the correct position is at the end of the list, AFTER will point to the
empty list.

Which shall I use''

33. User! Please use two pointers. [This choice might be based either on looking

ahead or on knowing at this point that the BEFORE pointer is useful for inserting

--- - — ^agU^jK, -

ymmmtimmmmmm^imm^mmh^ ■.mimtKm^nmim^i^^ii'iu.im3mtwm^^^vmi»mü\m>x».m\mMmwm**m*wi i - ■> .

PART 3: Synthesizing the Constructor page 21

into the list and the AFTER pointer is useful for incrementing the state of the

pooition imder and for testing the correctness of a position.]

34. Machine: I need variable names for the two pointers. I will use BEFORE and

AFTER.

We arc about to work on the position finder as indicated

transfer ini tlalizcr:
■ • •

transfer body:
LOOP UNTIL DONE;

constructor body:
add the element to output^

find (he position Jot the new eloncnt;
insert the neu element into the position;

REPEAT;
DONE: HALT.

"J

35. Machine: 1 am now writinc the program that finds the position. First we will

select a seareh strategy for searching the output list to find the correct position.

The only straleny which I know about for linked lists is a forward linear scan, so I

will use that strategy,

36. Machine: Since the search strategy is a forward linear scan of a finite list, tl 5

search strategy is total; that is, all possible positions will be considered, Since

the old output set is well-ordered, and since the ordering relation applies to all

elements involved, one of these possible positions must be correct. Therefore,

the search for a correct position must succeed, and no exit will be required for

the case of not finding a correct position. So I will use a loop which consists only

m-mmm MÜtmiiini in ' ^^^.-,-..^ *.,M.t.^iü:t&

PART 3: Synthesizing the Constructor page 23

represerting the state of the search. The incrementer will increment this state

and will also specify the next position to be considered,

39. Machine: Since the search strategy is a forward linear scan of the linked list,

and since the two-pointer position representation has been selected, the two

pointers (BEFORE and AFTER), which are already being used to represent the

position, are also sufficient to remember the state.!

40. Machine! An incrementer for a forward linear scan using the two-pointer

position representation requires two pieces of code: one to reset BEFORE to the

value of AFTER, and one to increment AFTER. This is adequate both for the

general case in the interior of a linked list, and in the special case at the front of

a list, where BEFORE originally has the special value "FRONT" and is reset to point

to the first cell in the list. The pieces will be put together in that order.

41. Machine: I am now writing the code to reset BEFORE to the value of AFTER.

The code to do that is:

BEFORE *■ AFTER

4,2. Machine: I am now writing the code to increment AFTER. Since the

representation is a linked list, the code to do that is:

AFTER •- CDR(AFTER)

f The position memory and the state memory need not always be the same. For
example, if only BEFORE were used to remember the position, a good choice of state-
memory would probably include a pointer playinc the same role as AFTER.

■AMMMMI ■waaiiiiiaiiritttfUMMiiMMMMMMMttlMMMMMri ■- — ■ .

IW^'wmwTW"—iTw'rJifr"'^«""*^»'^^

PART 3: Synthesizing the Constructor page 24

43- Machine: Putting these two pieces together, we have the following

incrementer for the position finder:

BEFORE - AFTER;
AFTER «- CDR(AFTER)

44. Machine! I will also need a position initializer which initializes both the state

of the position finder and the position representation to the first position

according to the search strategy.

45. Machine: Since the position representation is also used to represent the

state, we need only initialize the position representation.

46. Machine: Since the search strategy is forward linear scan, we must initialize

the position representation to the position at the front of the list. The

convention for representing the position at the front of the list is that BEFORE has

the unique value "FRONT" and that AFTER points to the entire list.

47. Machine: The code to set BEFORE to "FRONT" is:

BEFORE ♦• "FRONT"

48. Machine: The code to set AFTER to the entire list is:

AFTER •- OUTPUT

49. Machine: Putting these two pieces together, the initializer for the positi

finder is:

BEFORE ♦- "FRONT";
AFTER ♦- OUTPUT

on

tmmmitimm m^^mm '-"■^^ ^- ■.:.■,■■ ^.^... ,.-. .-WJNajl

PWWWIWWW JW^iPIWPPeWWWff^WGBWSIWWIWWjBWW^^

.■-',■'■ ■ :

PART 3: Synthesizing the Constructor page 25

Wc have just finished the indicated parts of the position finder

transfer ini t inlirer:

transfer botlijl
LOOP 1INTII. DONE;

constructor body:
add the element to output*

find the position for the neu element;»
initializc position finder loop*

BEFORE - "FRONT": •n
AFTER - OUTPUT; -n

LOOP UNTIL CORRECT POSITION FOUNDj
IF posi t ion i s correct

THT.N CORRECT POSITION FOUND;
increment state and specify position*

BEFORE - AFTER; -n
AFTER - CDRIAFTER); •n

M3Kh
CORRECT POSITION FOUND:

insert the neu clement into the position;

REPÜATi
DONE: HALT.

50. Machine: I will now work on the exit test for the correct position. I will first

try to infer the necessary pieces of this test.

51. Machine: Sin^.j the set is ordered, it follows from transitivity that the new

element need not be compared against all of the elements of the set, but merely

against the elements immediately adjacent to the position being considered

52. Machine: Since the search strategy is forward linear scan, at any point in the

search, all of the elements occurring before the current position in the list have

already been tested and found to be loss than the new element. This holds for

all positions including the initial position in which no elements occur before the

position in the list.

—— ■■

S^WSBWPW^WPpB^pPHmSPWsW^^

PART 3: Synthesizing the Jonslructor page 26

53. Machine: Thus, the lest for correctness of position need only include a test

that all elements occurring after the current position in the list are greater than

the new element.

54. Machine: To test that all elements occurring after the current position are

greater than the new element, the program must first test whether there are no

elerr.entr occurring after the current position. Then, if there are such elements,

it must test whether all such elements are greater than the new element.

55. Machine: A test that there are no elements occurring after the current

position is simply a test whether the list pointed to by the second pointer

(AFTER) is empty:

AFTER » NIL ?

56. Machine: As noted previously, the correctness test need only consider the

immediately adjacent elements, so that a test that all elements occurring after

the current position are greater than the new element is simply a test that the

first element occurring after the current position is greater than the new

element. To write such a tost I need code to extract the first element from the

list pointed to by AFTER and a test whether this element is greater than the new

element.

57. Machine: The code to extract the first element from a list is:

CAR(AFTER)

58. Machine: The code to test whether this element is greater than the new

element is:

CAIMAFTER) > ELEMENT 7

--^J ■"—^•La^"**,J*mi*,-"~ -'-■"- -- '-■■■■ ..^■■^^M^MlU^^MM^al»^-^^., ..

JilW.M^UIl|U«*» ip|^p^POTPi^!WB!BWWWlW!W5S^»^WI!ypi^W^

PART 3: Synthesizinc the Constructor page 27

59. Machine: Given the two partial tests, the complete correctness test is an

ordered ORt of the two partial tests:

[AFTER • NIL) OB [CAn(AFTER) > ELEMENT] ?

The indicated parts complete the position finder

transfer ini t i a i izer:
• • •

transfer borly:

LOOP UNTIL DONE;
• • •

constructor body:
add the element to output=>

find the position for tho neu element*
initial ire position finder loop=»

BEFORE - "FRONT";
AFTER - OUTPUT;

LOOP UNTIL CORRECT POSITION FOUND;
IF position is correct*

no elements occur after position:

AFTER = NIL
OR next element is greater*

CAR(AFTER) > ELEMENT
THEN CORRECT POSITION FOUND;

increment ct^te and specify position:
BEFORE - AFTER;
AFTER <- CDFUAFTER);

REPEATi
CORRLCT POSITION FOUND:

insert the neu element into the position;
REPEAT;
DONE: HALT

"0

60. Machine: Having completed the position finder, we must now write the list

f By "ordered nn" we mean that the second argument is evaluated only if the first
argument is false.

■ ■- - ■^^
M
-^———■—--■ liMUUMmim M liiin ii

ppw»m7»iM.wH«JHM^»«sp^«^i^^ iip^pipjjjuilimyitMiM

PART 4: Completing the Procram page 32

66. Machine: Having completed the pieces of the Selector and the pieces of the

Constructor, I can assemble the pieces into the final program using a Generate

and Process paradigm with the termination test before the generator.

67. Machine: The final program, without any meta-code or comments, and its

translation into LISP are given be

REST - INPUT;
OUTPUT - NIL;

LOOP 1INT11. DONE;

REST = NIL

THEN DONE;

ELEMENT •- CAn(REST);

REST - CümREST);

BEFORE *■ "FRONT";
AFTER •- OUTPUT;
LOOP UNTIL CORRECT POSITION FOUND;

IE
AFTER = NIL

OR CAWAFTER) > ELEMENT

THEN CORRECT POSITION FOUND;

BEFORE - AFTER;
AFTER - CDIMAFTER);

REPFAT;
CORRECT POSITION FOUND:

IE
BEFORE = "FRONT"

THEN OUTPUT •-
CONS(ELEMENT OUTPUT)

ELSE
CDR(BEFORE)-

CONS(ELEMENT AFTER);

REPEATj

DONE: KALT,

OW:

LAMBDA NIL
(PROG NIL

(SETQ OUTPUT NIL)
(SETQ REST INPUT)

LI

L3

(COND

((NULL REST)

(GO L2)))

(SETQ ELEMENT (CAR REST))

(SETQ REST (CDR REST))

(SETQ BEFORE "FRONT")
(SETQ AFTER OUTPUT)

(COND

((OR (NULL AFTER)

(GREATERP (CAR AFTER) ELEMENT))

(GO L4)))

(SETQ BEFORE AFTER)
(SETQ AFTER (CDR AFTER))

(GO L3)

L4
(COND

((EQUAL BEFORE "FRONT")
(SETQ OUTPUT

(CONS ELEMENT OUTPUT)))

(T
(RPLACD BEFORE

(CONS ELEMENT AFTER))))

(GOLD

L2 (RETURN NIL]

-■■-" "■'—-— , . ^

-^r-^^^rpr^.iu'.l^-Jl-—^i?".lW,->-^"->—™^ in iij^i u.. i. iJ -. J HUI.-. ■» -:..!. . .< .w-. ■wwi.ii.umwimnLi. . «^p. . v.. .vu^ns.,^«,^,^.^, . -r- Bii<<"tM»".|,«m«H

page 33

III. TYPES OP PROGRAMMING KNOWLEDGE

i

'•

On reviewing the dialogue, we can see that there are oeveral types of

knowledge involved. We first note that there is significant use of a kind of strategy or

planning knowledge. On one level, we see this in steps 9 and 14, where the system

discusses what must be done to write a transfer program. In step 9 for c imple, the

sub-steps 3 and 4, where the transfer order and the transfer termination method are

chosen, are really a kind of strategy for determining the form that the basic algorithm

will take. On a different level, we see a kind of global optimization in steps 21 and 39,

where the system decides that information structures designed for one purpose are

sufficient fcr another. In step 21, for example, the pointer originally chosen to save the

state of the selector (by marking the dividing point between those elements generated

and those not yet generated) is found to be adequate for the purpose of indicating the

next element to be generated. One could imagine, as an alternative to this type of

planning, the use of more conventional local optimization such as post-synthesis removal

or combination of redundant portions.

We also see that the system maker considerable use of inference and

simplification knowledge. Inference plays a role in the global optimization planning

mentioned above, and also appears in steps 16 and 28, where the selection and

construction re-orderings are determined. Simplification and inference are both

apparent in steps 50 through 56, where the test for the correctness of the position

was reduced to a simple test on the variable AFTER. Simplification and inference are

also needed in step 36 where the system decides that an error exit (for the case of no

position being found) is unnecessary.

mmmm -aMMMaMHMHMHLtfHMUtta*!». ■■-'■ ■■ '~"-'J—"■"MtiTilllKrir ^ - "-"■- ■■ ■ , J. - .■■--.'■■

«M!#|i^W^^lr«»«W,«!W^ ^p((MiUUjji,4.41jyi4||l|

TYPES OF PROGRAMMING KNOWLEDGE pasc 3^

Additionally, there are types of knowledge which are spread throughout the

dialogue. Relatively domain-r.pccific knowledge (in this casp, about sorting) is

particuk'Hy necessary in the earlier stages. Language-specific knowledge (in this case,

about LISP) is necessary when the final code is being generated. Genoral prograrnming

knowledge, such as knowledge about set enumeration and linked lists, is necessary

throughout the synthesis process. Further, one could imagine significant use of

efficiency information, although it is not present in our particular dialo^je.

The variety of types and amounts o' knowledge used in the dialogue would tend

to indicate that much more information is required for automatic syntheolo of sorting

programs than appeared in earlier, computer-implemented, systems for writing sort

programs [3, 7, 11]. Ruth has developed a formulation of the knowledge involved in

interchange and bubble sort programs [9]. His formulation is aimed primarily at the

analysis of simple student programs in an instructional environment and the analysis task

as defined does not seem to require the same depth and generality of knowledge

suggested by our dialogue. Our intuition is that a significantly greater depth of

programming knowledge would be required to extend his formulation to a larger class of

programs. It is also interesting to compare the information involved in our dialogue to

that found in non-implrmcntcd (and not intended for machine implementation) human-

oriented guides for sort-algorithm selection and in textbooks on sorting Martin [8]

gives methods for selecting a good algorithm for a particular sorting problem. Those

algorithms are much more powerful than those we deal with and their derivation would

require considerably more information. We note that at the level of algorithm

■''"■^*""*—*—j-'M''ii'—■■-*—-- - — .-■.-^—M—.^-JI.»^.^... ..

■I

,iiii^i;iii.ijiHW>Bi»iwiW-«iigM.t. 'aw.w.a^.pi.ijf^ppiiujiwi^yMt^
MMHMMNMH MMM

TYPES OF PROGRAMMING KNOWLEDGE pace 35

i

description presented, little explicit information is available to allow pieces of

algorithms to be fitted together or to allow slight modification of existing algorithms. A

sorting textbook such as [5], gives several orders of magnitude more information on

sorting than is required for our dialogue.

Can we measure or estimate in some way how much knowledge is necessary for

program-understanding systems? The fact that the dialogue describing the synthesis

took some seventy steps (with some of the steps rather complex) is an indication that

considerable information is involved. From our experiments, we estimate that about

one or two hundred explicitly stated "facts" or rules would get r. synthesis system

through the underlying steps of this dialogue. Furthermore, it is our guets that at least

this much knowledge density will be required for other similar tasks, in order to have

the flexibility necessary for the many aspects of program understanding. Although we

are suggesting that such information must be effectively available in some form to a

system, we are not in a position to estimate how much of this information should be

stated explicitly (as, say, rules), how much should be derivable (from, say, meta-rules),

how much should be learned from experience, or available in any other fashion.

IV. SUMMARY AND CONCLUSIONS

In this papr we have tried to exemplify and specify the knowledge -jopropriate

for a program-understanding system which can synthesize small programs, by presenting

a dialogue between a hypothetical version of such a system and a user. Our conjecture

^MMMMÜM -MjgiyjjgHj^^ j^-.. ;-. ■jAj-.-vJlf

SUMMARY AND CONCLUSIONS page 36

is that unieos a system is capable of exceeding the reasoning power, and even some of

the communication abilities, exemplified by the dialosue, the system will not effectively

"understand" what it is doing well enough to synthesize, analyze, modify, and debug

programs. It appears that a system which attempts to meet this standard rnuot have

large amounts of many different kinds of knowledge. Most such programming knowledge

remains to be codified into some form of machine implementable theory. In fact, the

codification of such knowledge is one of the main research problems in procram-

understanding systems.

As for our own work, in the near future we expect to refine our experimental

system until it approaches 'as closely as seems useful and posoible) the standard

suggested by our dialogue (but without the actual language interface). We hope then

to extend the system to deal with several different types of sorting programs. Perhaps

then we will be in a better position to estimate the requirements of larger program-

understanding systems.

V. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the helpful suggestions given by Avra J.

Cohn, Brian P. McCune, Richard J, Waldinger, and Elaine Kant after numerous readings of

earlier drafts of this paper. Computer time for our preliminary tests was made

available by the Artificial Intelligence Center of the Stanford Research Institute.

MMMMBMlMi — .^^^.^^.^ — ^ . ., ..■■,......,

